Video | Strata + Hadoop World NYC 2016 | “The Evolution of Massive Scale Data Processing”

In this video, Tyler Akida presents a whirlwind tour of the evolution of massive-scale data processing at Google, from the original MapReduce paradigm to the high-level pipelines of Flume to the streaming approach of MillWheel to the portable, unified streaming/batch model of Google Cloud Dataflow and Apache Beam (incubating).

Tyler also highlights similarities and differences with related open source systems such as Flink, Spark, Storm, and Gearpump, calling out ways in which they’re converging on and diverging from the Beam model and what that means when running Beam pipelines on their respective runners. Watch Video

Blog Publisher / Head of Data Science Search

Founder & Head of Data Science Search at Starbridge Partners, LLC.