Edu-Video |”Building a Production Machine Learning Infrastructure” – Josh Wills /Dir. Data Scientist

(Reposted due to popular demand) Another great video from Josh Wills. Josh is Sr. Director of Data Science at Cloudera and has a gift for making fairly complicated technology explanations very digestible to the novice and intermediary techie.

What I most love about this video is how Josh explains -very clearly – the issue of translating analytics Machine Learning on a large set of data records (many individuals) and making it work well in a “real life” production environment on a single individual (think eCommerce). Watch Video

Edu-Video | “EDWARD”: A Library for Probabilistic Modeling, Inference, and Criticism | ML NYC Meetup

“Edward”: A library for probabilistic modeling, inference, and criticism Abstract https://www.meetup.com/NYC-Machine-Learning/events/236943279/ http://www.zentation.com/viewer2/webcast/NAPNgdDUBF/Dustin-Tran—Spotify-Talk-(2017-01-19) Probabilistic modeling is a powerful approach for analyzing empirical information. In this talk, I will provide an overview of Edward, a software library for probabilistic modeling. Formally, Edward is a probabilistic programming system built on computational graphs,supporting compositions of both models and inference […]

VIDEO | Dr. Andy Feng, VP Architecture at Yahoo! | “Large-Scale Machine Learning” | 2016 CSL Student Conference

The University of Illinois’ Coordinated Science Laboratory had it student run conference last month. This video is Dr. Andy Feng – VP Architecture at Yahoo! He leads the architecture and design of big data and machine learning initiatives. “In this talk, we illustrate Yahoo use cases and datasets, and explain the evolution of big-data technology stack.” Watch Video

Podcast | Understanding Predictive Analytics (O’Reilly)

In this episode of the O’Reilly Data Show, O’Reilly’s online managing editor Jenn Webb speaks with Natalino Busa on the topic of predictive analytics, the challenges of feature engineering, and a new class of techniques that is enabling features to emerge from patterns within the data.

They also discuss the relationship between predictive techniques and high-quality microservices, and how machine learning is being used to improve financial services. Listen to Podcast

Video | Strata + Hadoop World NYC 2016 | “The Evolution of Massive Scale Data Processing”

In this video, Tyler Akida presents a whirlwind tour of the evolution of massive-scale data processing at Google, from the original MapReduce paradigm to the high-level pipelines of Flume to the streaming approach of MillWheel to the portable, unified streaming/batch model of Google Cloud Dataflow and Apache Beam (incubating).

Tyler also highlights similarities and differences with related open source systems such as Flink, Spark, Storm, and Gearpump, calling out ways in which they’re converging on and diverging from the Beam model and what that means when running Beam pipelines on their respective runners. Watch Video

VIDEO | NYC Machine Learning Meetup 2016 | Dan Melamed “How To Learn From What Your Users Might Not See”

At the Machine Learning Meetup in NYC, Dan Melamed gave a machine learning talk titled: “How To Learn From What Your Users Might Not See”. This talk will focus on contextual bandits and their applications.

In this tutorial, Dan will show how to learn from such data in a principled, efficient, and unbiased manner. The techniques that he will describe were largely responsible for a click-thru rate gain of over 25% on MSN.com. Watch Video

Blog Publisher / Head of Data Science Search

Founder & Head of Data Science Search at Starbridge Partners, LLC.