Share on LinkedInTweet about this on TwitterShare on Google+Share on FacebookShare on Reddit

 By Tony Cosentino on SmartDataCollective.com

A few months ago, I wrote an article on the four pillars of big data analytics. One of those pillars is what is called discovery analytics or where visual analytics and data discovery combine together to meet the business and analyst needs. My colleague Mark Smith subsequently clarified the four types of discovery analytics: visual discovery, data discovery, information discovery and event discovery. Now I want to follow up with a discussion of three trends that our research has uncovered in this space. (To reference how I’m using these four discovery terms, please refer to Mark’s post.)

The most prominent of these trends is that conversations about visual discovery are beginning to include data discovery, and vendors are developing and delivering such tool sets today. It is well-known that while big data profiling and the ability to visualize data give abroader capacity for understanding, there are limitations that can be addressed only through data mining and techniques such as clustering and anomaly detection. Such approaches are needed to overcome statistical interpretation challenges such as Simpson’s paradox.

In this context, we see a number of tools with different architectural approaches tackling this obstacle. For example, Information Builders, Datameer, BIRT Analytics and IBM’s new SPSS Analytic Catalyst tool all incorporate user-driven data mining directly with visual analysis. That is, they combine data mining technology with visual discovery for enhanced capability and more usability.

 Our research on predictive analytics shows that integrating predictive analytics into the existing architecture is the most pressing challenge (for 55% or organizations). Integrating data mining directly into the visual discovery process is one way to overcome this challenge.

The second trend is renewed focus on information discovery (i.e., search), especially among large enterprises with widely distributed systems as well as the big data vendors serving this market. Read More...

vr_predanalytics_predictive_analytics_obstacles

Share on LinkedInTweet about this on TwitterShare on Google+Share on FacebookShare on Reddit

Blog Publisher / Head of Data Science Search

Founder & Head of Data Science Search at Starbridge Partners, LLC.