Share on LinkedInTweet about this on TwitterShare on Google+Share on FacebookShare on Reddit

Predictive Analytics

Preface to this Post:

Martin Butler of ButlerAnalytics.com wrote the original article July 17, 2013, which then received comments and further research recommendations which I will include here. In Martin’s comments on AnalyticsBridge.com he added some follow up notes on the piece.

“There is nothing sacred about this list – content or size. But – some things to bear in mind:

  1. Nearly all technology markets become dominated by around 3 suppliers. Many of the entrants into the analytics market will fail or be swallowed up.
  2. Corporate management likes big names.
  3. Putt’s law dictates that it’s the suppliers management feel comfortable with that are the ones who get selected – not suppliers with the best technology.

I tried to accommodate these dynamics in my list.”

10 ENTERPRISE PREDICTIVE ANALYTICS PLATFORMS COMPARED

The ten predictive analytics offerings listed below vary enormously in functionality and applicability. Where a product is exceptional it is given a five star rating – although this obviously does not mean it is the best solution for your organization. Tibco has been added because it embraces R for predictive analytics, but is also capable of BI and visualization – an interesting mix.

FICO stars40

FICO provides a broad range of technologies and services to support business optimisation and the embedding of intelligence into applications of various kinds. Under the hood there is a lot going on – from linear (and non-linear) programming through to predictive analytics and other extremely powerful methods of supporting business decisions through applying intelligence to a variety of applications. It is clear that the experience and know-how of FICO in the industries it serves is probably unique. Financial services, retail, government and healthcare are its main markets, but the technologies and methods they employ have broad applicability.

Fraud detection and customer credit worthiness are two of the primary themes in the application of its technology, but the portfolio is so broad that most business problems will be addressable. Perhaps most interesting is the capability to combine different model types into a cohesive whole. Business rules (which are deterministic) can be combined with predictive analytics (which is usually probabilistic) to create very accurate models for dealing with customers and detecting anomalies.

IBM  stars50

For IBM predictive analytics is largely a data management and infrastructure issue. In my conversations with them they stress the data management aspect particularly, and with good reason. The application of algorithms to data and the building of models, which is primarily accomplished with SPSS, is really just a small part of the story. The management of large data volumes and the deployment of models into the production environment is the more challenging aspect of analytics, and it is something IBM does very well.

The IBM analytics solution will primarily be of interest to large organisations looking for more than a point solution, and wanting to create a viable, long term analytics infrastructure and capability. To this end IBM offers its InfoSphere data management and infrastructure products, and the SPSS suite of analytical tools for both analysts and end users. The combination represents the premier analytical solution currently available, and of course IBM has a number of vertical solutions to offer also. It is of course a fairly expensive solution, but in many ways is unchallenged.

SPSS

Data Collection Family

This suite of products from IBM is primarily aimed at the design, creation, deployment, analysis and reporting of surveys. They provide a top-to-tail capability that supports various means of survey distribution (web, paper, phone, in-person) and the supporting technology to capture the results, including scanning of documents and text processing.

The SamplePower utility provides a means of establishing survey sample size – something that would normally require a skilled statistician. This sets the tone for the whole Data Collection product set, since virtually all elements of the process can be handled by users. This does not however include the analytics used to draw conclusions from the data, and is the domain of the statistics and Modeler packages.

IBM SPSS Statistics

This perhaps the most widely used set of statistical products in the world. The capability ranges from end user marketing tools through to specialised statistical analysis, and of course the very well respected SPSS analyst workbench. There isn’t much utility in detailing the features of the statistics capability because it does pretty well everything. A few things are also available that are not really statistical in nature such as neural networks.

IBM SPSS Modeler

This employs data mining techniques to find relationships within data. The professional version supports the creation of predictive models using classification, association and segmentation techniques. Modeler Premium adds the ability to process unstructured data from the web, text, email, social data and so on. Again there is little point listing all the techniques supported by Modeler since most conceivable options are present (Bayes, SVM, K-means etc).

Deployment Family

IBM SPSS Decision Management allows predictive models to be integrated with business rules for deployment into production systems. The Collaboration and Deployment option supports the sharing of analytical assets and provides an environment to automate the analytical process.

InfoSphere

InfoSphere addresses more than predictive analytics requirements and is fully addressed in a separate paper. However the broad capability of the product suite includes InfoSphere Warehouse for traditional data warehousing, InfoSphere Information Server, DataStage and Data Replication to support integration and data staging, Master Data Management and Big Data analytics, which is based on the Apache Hadoop technology.

Big Data analytics not only supports large data sets, but provides sufficient performance for real-time analytics and accommodation of very high volume streaming data. This will become more important as information sources from various sensors (eg RFID) and real-time market information becomes more widely used.

KXEN  stars40

KXEN is one of the leaders in the world of predictive analytics, and with good reason. …

Read Full Article Here

++++++++++++++++++++++++++++++++++++++++++++++

For those wishing to see a larger list on Analytics Software Use should check out KDNugget’s Annual Software Review

Titled “What Analytics, Big Data, Data mining, Data Science software you used in the past 12 months for a real project?”  Where the battle for #1 came down to RapidMiner and R.  Read Review Here

(Partial List)

analytics software used

 

Share on LinkedInTweet about this on TwitterShare on Google+Share on FacebookShare on Reddit

Blog Publisher / Head of Data Science Search

Founder & Head of Data Science Search at Starbridge Partners, LLC.